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Abstract. Let G 5 (V, E) be a graph without isolated vertices. A set S #V is a paired-
dominating set if it dominates V and the subgraph induced by S, kSl, contains a perfect matching.
The paired-domination number g (G) is defined to be the minimum cardinality of a paired-p

dominating set S in G. In this paper, we present a linear-time algorithm computing the
paired-domination number for trees and characterize trees with equal domination and paired-
domination numbers.

1. Introduction

Let G 5 (V, E) be a graph without isolated vertices with vertex set V of order n and
edge set E. Consider a vertex v [V. The open neighborhood of v is defined by
N(v)5 hu [V u uv [Ej and the closed neighborhood of v is defined by N[v]5
N(v)< hvj. For S #V, the open neighborhood of S is the union of the open
neighborhoods of vertices in S, that is, N(S)5< N(v) and the closed neigh-v[S

borhood of S is defined similarly by N[S]5< N[v]. The private neighborhoodv[S

PN(v, S) of v [ S is defined by PN(v, S)5N[v]2N[S 2 hvj]. The subgraph of G
induced by the vertices in S is denoted by kSl.

In a tree T, a vertex is remote if it is adjacent to a leaf and is a branch vertex if it
has the degree at least 3. Denote by B(T ) the set of branch vertices of T and by L(T )
the set of leaves.

A set S #V is a dominating set if every vertex not in S is adjacent to a vertex in
S. The domination number of G, denoted by g(G), is the minimum cardinality of a
dominating set. A minimum dominating set of a graph G is also called a g(G)-set of
G. If X dominates Y #V, we write X sY, or X sG if Y 5V, or X s y if Y 5 hyj. The
independent domination number of G, denoted by i(G), is the minimum cardinality
of an independent dominating set. A set S #V is a restrained dominating set, if
every vertex not in S is adjacent to a vertex in S and to a vertex in V2 S. The
restrained domination number of G, noted by g (G), is the minimum cardinality of ar

restrained dominating set of G.
A set S #V is a paired-dominating set if S dominates V and the induced subgraph

kSl has a perfect matching. If v v 5 e [M, where M is a perfect matching of kSl,j k i

we say that v and v are paired in S. Paired-domination was introduced by Haynesj k

and Slater [1] with the following application in mind.
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If we think of each s [ S #V as the location of a guard capable of protecting
each vertex in N[s], then domination requires every vertex to be protected. In
paired-domination, each guard is assigned another adjacent one, and they are
designed as backup for each other.

The paired-domination number g (G) is defined to be the minimum cardinality ofp

a paired-dominating set S in G. A minimum paired-dominating set of a graph G is
called a g (G)-set of G.p

OBSERVATION 1. [1] For any graph G without isolated vertices, g(G)<g (G)<p

2b (G) and g (G) is even, where b (G) denotes the size of a maximum independent1 p 1

set of edges.

THEOREM 1. [1] Deciding, for a given graph H and a positive (even) integer
k < uV(H )u, ‘‘Is g (H )< k?’’ is NP-complete.p

Since the problem of determining the paired-domination number of an arbitrary
graph is NP-hard, it is theoretically important to consider algorithms of paired-
domination number in special graphs. In another aspect, an area of research that has
received considerable attention is the study of classes of graphs for which some of
these parameters are equal or not equal. For any graph theoretical parameters l and
u, we define G to be a (l, u)-graph if l(G)5 u(G). The class of (g, i)-trees, that is,
trees for which g 5 i, was characterized in [5]. Several classes of (g, i)-graphs have
been found (see [6]). A constructive characterization of trees with equal independent
domination and restrained domination numbers was given in [4]. In Section 2, we
present a linear time algorithm for computing paired-domination number in trees. A
characterization of trees with equal domination and paired-domination numbers is
given in the third section.

2. A paired-domination algorithm of trees

We now define some basic concepts and notations for trees. A rooted tree T is a
directed tree in which there exists a vertex r with the property that there is a directed
path in T from r to every other vertex in T. The vertex r is unique with respect to
the above-mentioned property and is called the root of T. For a vertex v of a rooted
tree T, the parent p(v) of v is the unique vertex such that there is a directed edge
from p(v) to v, a child of v is a vertex u such that p(u)5 v, and a descendant of v is
a vertex u such that there is a directed v 2 u path in T. Also, for a directed tree, the
open neighborhood of a vertex v is defined as N(v)5 hu [V u uv [E or vu [Ej.
That is, the parent and the children of v detemine the open neighborhood of v. The
other definitions for a graph given in the introduction are the same for a directed
tree.

When we consider a rooted tree, we will assume its edges to be directed as
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explained above, but will not mention this explicitly. We will also refer to the
‘‘edges’’ of the tree, not ‘‘arcs’’ or ‘‘directed edges’’. We define the following
notations:

C(v)5 hu [V : u is a child of vj
c(v)5 u if C(v)5 u

D(v)5 hu [V : u is a descendant of vj
D[v]5D(v)< hvj

The subtree of T induced by D[v] is denoted by T . Note that if T is rooted at v,v

then T 5T .v

A path P in T is said to be a v 2L path if P joins v to a leaf of T. P represents al

path with l vertices. The length of a path P is defined as the number of edges in that
path, and is denoted by l(P). Consider T to be rooted and for j 5 0, 1, 2, 3 define

jC (v)5 hu [C(v) : T contains a u 2 L path P with l(P)5 j(mod 4)ju

Suppose T is rooted at v, i.e., T 5 T . Let u be a branch vertex at maximum distancev

from v. Note that uC(u)u> 2 and d(x)< 2 for each x [D(u), where d(x) denotes the
1 1degree of vertex x. For each w [C(u), we allocate a priority to w, where w [C (u)

0 0 0 0 2have higher priority than w [C (u), w [C (u) have higher priority than w [
2 3 3C (u), which again have higher priority than w [C (u).
Next we present a linear time algorithm for the minimum paired-domination

problem of trees. The algorithm first breaks the original tree T into a collection ofv

components, T , where each component is a path (Step 3 and Step 4). Then, for0

each path in T the minimum paired-dominating set is computed (Step 7 to Step 14).0

Algorithm 1. Minimum paired-domination for trees.

Input. A rooted tree T with root v such that uV(T )u> 2.v v

: : :Step 1: Set T 5T , J 5 5, S 5 5. We also set T to be a dummy empty graph,v 0

i.e., a graph with no vertices and no edges.
Step 2: Use the breadth-first method to search all the vertices of T , determine thev

distance d(v, x) for each vertex x [V(T ) and simultaneously generate thev

branch-vertex sequence

(u , u , . . . , u )1 2 r

such that each branch-vertex appears exactly once in the sequence and
such that

d(v, u )< d(v, u )<? ? ?< d(v, u ) .1 2 r

: :Set B(T ) 5 hu , u , . . . , u j and m 5 r.1 2 r

:Step 3: If m 5 0 (i.e., B(T )5 5), set T 5T < T, go to Step 5. Otherwise (i.e.,0 0

B(T )± 5), go to Step 4.



46 HONG QIAO ET AL.

:Step 4: Set u 5 u . For each child x of u, let x9 be the unique leaf in T . Form x

i 5 0, 1, 2, 3 set

j :C (u) 5 hx [C(u) : d(x, x9)5 j (mod 4)j .

Choose a child z of u such that z has the highest priority in T . Setu

:T 5T 2< D[w] ,w[C(u)2z

:T 5T < (< T )00 0 w[(C(u)2z)2C (u) w

< (< (T 2wc(w)))0w[(C(u)2z)>C (u),c(w)±5 w

< (< hwj) .0w[(C(u)2z)>C (u),c(w)55

0Furthermore, if (C(u)2 z)>C (u)± 5, we label the vertex u by p and set
: : :J 5 J < huj. Then set B(T ) 5B(T )2 u, m 5m 2 1 and go to Step 3.

:Step 5: Set T to be the isolated vertex set of the graph T , set T 5T 2 T .10 0 20 0 10

Step 6: If T is a dummy empty graph, then stop. Otherwise, go to Step 7.20

Step 7: Arbitrarily choose a component P of T . Clearly, P is a directed path. We20

suppose that

P 5 v v . . . v (v [⁄ J) .i i i il1 2 2

: :Set T 9 5P, k 5 l.
:Step 8: If k 5 2, set S 5 S <V(P), go to Step 14. Otherwise (k > 3), go to Step 9.

:Step 9: If v [⁄ J, set S 5 S < hv , v j then go to Step 10. Otherwise (v [ J),i i i i1 2 3 1

:set S 5 S < hv , v j, go to Step 11.i i1 2

:Step 10: If k 5 3, go to Step 14. Otherwise (k > 4), if v [ J, set T 9 5T 92i4

: :hv , v , v j, v 5 v for 1< j < k 2 3, k 5 k 2 3, go to Step 8. Ifi i i i i1 2 3 j j13

v [⁄ J, go to Step 13.i4

: : :Step 11: If v [ J, set T 9 5T 92 hv , v j, v 5 v for 1< j< k2 2, k 5 k2 2,i i i i i3 1 2 j j12

go to Step 8; if v [⁄ J, go to Step 12.i 3

:Step 12: If k 5 3, go to Step 14. If k 5 4, set S 5 S < hv , v j, go to Step 14. Ifi i3 4

: : :k > 5, set T 9 5T 92 hv , v , v j, v 5 v for 1< j < k 2 3, k 5 k 2 3,i i i i i1 2 3 j j13

go to Step 8.
:Step 13: If k 5 4, go to Step 14. If k 5 5, set S 5 S < hv , v j, go to Step 14. Ifi i4 5

: : :k > 6, set T 9 5T 92 hv , v , v , v j, v 5 v for 1< j < k 2 4, k 5i i i i i i1 2 3 4 j j14

k 2 4, go to Step 8.
:Step 14: Set T 5T 2V(P), go to Step 6.20 20

Output: The vertex set S, which is a minimum paired-dominating set of the tree T .v

The complexity of the above algorithm can be estimated as follows. The time used
in performing Step 2 is clearly O(uV(T )u). The time used in performing Step 4 for av

given branch vertex u is O(uC(u)u). Hence, the time used in the loop from Step 3 to
Step 4 is at most O(uV(T )u). The loop from Step 8 to Step 13 determines thev

minimum paired-dominating set of a path P under the condition that each vertex
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labelled p must be included in the paired-dominating set. The time used is clearly at
most O(uV(P)u). Thus, the time used in the loop from Step 6 to Step 14 is at most
O(uV(T )u). It follows that the total time used in the performance of the abovev

algorithm is O(uV(T )u). We prove next the correctness of the algorithm.v

By Algorithm 1, it is easily seen

PROPERTY 1. (a) Any branch of the graph T produced by Step 1 –Step 5 is a20

path, which has at most one end vertex labelled p.
(b) For any branch P of the graph T , if V(P)> J 5 5, then V(P)> S is a g -set20 p

of P.

Property 1 ensures that for every branch P of T there exists a paired-dominating20

set of P containing all vertices of J.

THEOREM 2. Given a tree T of order n, Algorithm 1 computes in time O(n) a
minimum paired-dominating set of T.

Before we prove the theorem, we first give some lemmas which will be used in the
proof.

LEMMA 1. If v is a remote vertex of tree T, then for every paired-dominating set S,
v [ S.

Proof. Assume u is a leaf and vu [E(T ). To dominate u either u or v [ S. By the
definition of paired-dominating set, u [ S implies v [ S. The result follows. h

LEMMA 2. Let P be a path v v . . . v , then g (P )5 2l /4.l 1 2 l p l

LEMMA 3. Suppose T is a tree rooted at v and let u be a branch vertex at
maximum distance from v.

0(a) If C (u)± 5, then there exists a g -set of T containing u.p
1(b) If w [C (u)± 5, then there exists a g -set of T containing u and w.p

0Proof. (a) Let X be a g -set of T. If C (u)>L(T )± 5, by Lemma 1, u [X. We mayp
0assume w [C (u)2L(T ) and u [⁄ X, then X >D[w]sT . So uX >D[w]u>w

2uD[w] /4. By Lemma 2, g (D[c(w)])5 2uD[c(w)]u /45 2uD[w]u /42 2. Let S bep 1

a g -set of T , then S < hw, ujs T . Furthermore X 5 (X 2D[w])< hw, uj< Sp c(w) 1 w 1 1

is a g -set of T and u [X .p 1

(b) Let X be a g -set of T. If w and u [X, the theorem follows. So we mayp

assume that either u [⁄ X or w [⁄ X. If u [⁄ X, then X >D[w]s T . So uX >D[w]u>w

2uD[w]u /4. Let w [N(c(w))2w, then g (T )5 2uD[w ]u /45 2uD[w]u /42 2.1 p w 11

Let S be a g -set of T , then S < hu, wjsT . Furthermore, X 5 (X 2D[w])<1 p w 1 w 11

hu, wj< S is a g -set of T and u, w [X .1 p 1
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If u [X, w [⁄ X, then X >D[c(w)]sT . So uX >D[c(w)]u> 2uD[c(w)]u /45c(w)

2uD[w ]u /41 2. Let S be a g -set of T , then X 5 (X 2D[c(w)])< hw, c(w)j< S1 1 p w 1 11

is a g -set of T and u, w [X . hp 1

Proof of Theorem 2. Let T be a tree on n vertices. We proceed by induction on n.
Let u be a branch vertex at maximum distance from v. Let y be a child of u of
lowest priority. We consider T 95 T 2D[y]. Let S be a paired-dominating set of T

3 2 1produced by Algorithm 1. If y [C (u)<C (u)<C (u), then S95 S >V(T 9) is a
paired-dominating set of T 9 produced by Algorithm 1. By induction hypothesis, S9
is a g -set of T 9. And by Property 1(b), S >D[y] is a g -set of T . So g (T )<p p y p

0
g (T 9)1g (T )5 uSu. If y [C (u), then u [ S. Let S9 be a paired-dominating set ofp p y

T 9 produced by Algorithm 1. From Algorithm 1, we know that uS >V(T 9)u5 uS9u. By
induction hypothesis, S9 is a g -set of T 9. So S >V(T 9) is a g -set of T 9. Thenp p

g (T )<g (T 9)1g (T )5 uSu. Furthermore, we show that g (T )> uSu by consider-p p p c( y) p

ing four cases.

3
CASE 1. y [C (u)

Let y be a child of u of highest priority.1
0If y [C (u), by Lemma 3, there exists a g -set X of T such that u [X. If y [⁄ X,1 p

then X >D[y]s T , X >V(T 9)s T 9. By Lemma 2, g (T )5g (T ). So g (T )>c( y) p c( y) p y p

g (T 9)1g (T )5 uSu. If y [X and y, u are not paired, then X >V(T 9)s T 9 andp p y

X >D[y]s T . So uXu5g (T )>g (T 9)1g (T )5 uSu. If y [X and y, u are paired.y p p p y

Let y95 c( y), then X >D[y9]s T . By Lemma 2, g (T )5g (T ). We mayc( y9) p y p c( y9)

assume that there exists a vertex w [N(u)2 y such that w [⁄ X. Otherwise, let S be1

a g -set of T , then X 5 (X 2 hu, yj<D( y))< S is a paired-dominating set of T,p y 1 1

and uX u, uXu, a contradiction. Then X95 (X 2D[y])< hwj< S is a g -set of T and1 1 p

X9>V(T 9)sT 9, X9>D[y]s T . So uX9u5g (T )>g (T 9)1g (T )5 uSu.y p p p y
1If y [C (u), by Lemma 3, there exists a g -set X of T such that y , u [X. If1 p 1

y [⁄ X, then X >D[y]s T , X >V(T 9)s T 9. By Lemma 2, g (T )5g (T ). Soc( y) p y p c( y)

g (T )>g (T 9)1g (T )5 uSu. If y [X, we claim that u, y are not paired. Otherwise,p p p y

if u, y are paired in X, let y95 c( y), then X >D[y9]s T and X >D[y ]s T .c( y9) 1 y1

Let y 5 c( y ), by Lemma 2, g (T )5g (T )1 2 and g (T )5g (T ). Let S2 1 p y p c( y ) p y p c( y9) 11 2

be a g -set of T and let S be a g -set of T , then X95 (X 2D( y )<D[y])<p c( y ) 2 p y 12

S < S is a paired-dominating set of T. But uX9u, uXu, a contradiction. So u, y are1 2

not paired. Then X >V(T 9)sT 9 and X >D[y]s T . So uX9u5g (T )>g (T 9)1y p p

g (T )5 uSu.p y
2If y [C (u), let X be a g -set of T. If either u, y [⁄ X or u [⁄ X, y, y [X, then1 p 1

X >V(T 9)s T 9, X >D[y]sT . So g (T )>g (T 9)1g (T )5 uSu. If u, y [⁄ X, y [y p p p y 1

X, let y95 c( y), y 5 c( y9), then X >D[y ]s T . By Lemma 2, g (T )52 2 c( y ) p y2

g (T ). Let S be a g -set of T , then X95 (X 2D[y])< S < hu, y j is a g -set ofp c( y ) 1 p y 1 1 p2

T, and X9>V(T 9)s T 9, X9>D[y]s T . So g (T )>g (T 9)1g (T )5 uSu. If u [X,y p p p y

y [⁄ X, then X >D[c( y)]s T , X >V(T 9)s T 9. By Lemma 2, g (T )–g (T ). Soc( y) p c( y) p y
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g (T )>g (T 9)1g (T )5 uSu. If u, y [X, and u, y are not paired, then X >V(T 9)sp p p y

T 9, X >D[y]sT . So g (T )>g (T 9)1g (T )5 uSu. If u, y [X and u, y are pairedy p p p y

in X, then X >D[y9]sT . By Lemma 2, g (T )5g (T ). We may assume thatc( y9) p c( y9) p y

there exists a vertex w [N(u)2 y such that w [X. Otherwise, a contradiction will
be yielded. Let S be a g -set of T , then X95 (X 2D[y])< S < hwj is a g -set of1 p y 1 p

T, and X9>V(T 9)sT 9, X9>D[y]s T . So g (T )>g (T 9)1g (T )5 uSu.y p p p y
3If y [C (u), discussed similarly, g (T )> uSu.1 p

2
CASE 2. y [C (u)

0 1 2Let y be a child of u of highest priority, then y [C (u)<C (u)<C (u).1 1
0If y [C (u), by Lemma 3, there exists a g -set X such that u [X. If y [⁄ X, then1 p

X >D[y]s T , X > T 9s T 9. By Lemma 2, g (T )5g (T ). So g (T )>c( y) p c( y) p y p

g (T 9)1g (T )5 uSu. If y [X and y, u are not paired, then X >D[y]sT , X >p p y y

T 9sT 9. So g (T )>g (T 9)1g (T )5 uSu. If y [X and y, u are paired. Without lossp p p y

of generality, we may assume that there exists a vertex w [N(u)2 y such that
w [⁄ X. Let y95 c( y), then X >D[c( y)]sT . By Lemma 2, g (T )5g (T ).c( y9) p y p c( y9)

Let S be a g -set of D[y], then X95 (X 2D[y])< S < hwj is a g -set of T. So1 p 1 p

g (T )>g (T 9)1g (T )5 uSu.p p p y
1 2If y [C (u)<C (u), discussed similarly, g (T )> uSu.1 p

1
CASE 3. y [C (u)

1Let y be a child of u of highest priority, then y [C (u). By Lemma 3, there exists1 1

a g -set X of T such that u, y [X. Since y , y have equal priority, we may assumep 1 1

either y [⁄ X or y [X and y, u are not paired with a perfect matching M of kXl. Then
X >V(T 9)s T 9, X >D[y]s T . By Lemma 2, g (T )5g (T ). So g (T )>c( y) p c( y) p y p

g (T 9)1g (T )5 uSu.p p y

0
CASE 4. y [C (u)

By Lemma 3, there exists a g -set of T such that u [X. Without loss of generality,p

we may assume y [⁄ X, then X >D[c( y)]s T , X >T 9s T 9. So g (T )>g (T 9)1c( y) p p

g (T )5 uSu.p c( y)

Then g (T )5 uSu, S is a g -set of T. hp p

3. A characterization of (g, g )-treesp

In this section, we characterize trees with equal domination and paired-domination
numbers. To state the characterization, we introduce four types of operations that we
use to construct trees with equal domination and paired-domination numbers.
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Type-1 operation: Attach a path P to a vertex of a tree T, which is in a g -set of1 p

T.
Type-2 operation: Attach a P to a vertex v of a tree T, where v is in a g -set of T5 p

and for every g-set X of T, there is no vertex u such that
PN(u, X)5 v in T.

Type-3 operation: Attach a remote vertex of P to a vertex v of a tree T, where v4

is a vertex such that for every g-set X of T, there is no vertex u
such that PN(u, X)5 v in T.

Type-4 operation: Attach a vertex u of tree T to a vertex of a tree T, where T is0 1 1

a tree with V(T )5 hu , u , u , u , u j and E(T )51 0 1 2 3 4 1

hu u , u u , u u , u u j.0 1 1 2 1 3 2 4

Let J be the family of trees that have equal domination and paired-dominationp

numbers. Then

J 5 hT ; g(T )5g (T )jp p

LEMMA 4. If T is a tree with g (T )5g(T ), S is a g -set of T, then for each v [ S,p p

PN(v, S)± 5.

Proof. Suppose to the contrary that there exists a vertex v [ S such that PN(v, S)5
5, then S 2 hvj is a dominating set of T, a contradiction. This completes the proof of
the lemma. h

LEMMA 5. If T is a tree with g (T )5g(T ), then T has a unique g -set.p p

Proof. We proceed by induction on n, the order of the tree T. If n < 4, then T [ hP j4

and T has a unique g -set. Let n > 5 and assume that for all trees T 9[ J of orderp p

n9, n9, n, T 9 has a unique g -set. Let T [ J be a tree of order n and letp p

v , v , . . . , v be a longest path in T. If d(v )> 3, then there exists a leaf u such that0 1 t 1

v u [E(T ). Let T 95T 2 u, then by Lemma 1 we have1

g (T 9)5g (T )5g(T )5g(T 9) .p p

It follows that T has a unique g -set of T. Hence, we may assume that d(v )5 2.p 1

Claim 1. For any u [N(v )2 hv j, u is not a remote vertex.2 1

Suppose to the contrary that v is adjacent to a remote vertex u ± v , then for2 1 1

every g -set S of T, S >L(T )± 5. And for each v [ S > L(T ), PN(S, v)5 5. Byp

Lemma 4, this is a contradiction.
By Claim 1, we may suppose that either v is adjacent to a leaf or d(v )5 2.2 2
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CASE 1. v IS ADJACENT TO A LEAF2

Let S be a g -set of T, then hv , v j# S. Let T denotes the subtree of T 2 hv v jp 1 2 v 2 33

containing v .3

If v [⁄ PN(v , S), then S 2 hv , v j is a paired-dominating set of T . So3 2 1 2 v3

g (T )<g (T )2 2. However, any g -set of T can be extended to a paired-p v p p v3 3

dominating set of T by adding the vertex v and v . So g (T )<g (T )1 2.1 2 p p v3

Consequently, g (T )5g (T )1 2. Since g(T )<g(T )1 2<g (T )1 25g (T )p p v v p v p3 3 3

and T [ J , g (T )5g(T ). Applying the inductive hypothesis to T , T has ap p v v v v3 3 3 3

unique paired-dominating set S . It follows that S 5 S < hv , v j is a unique g -set1 1 1 2 p

of T.
If v [PN(v , S), by Lemma 1, v is not a remote vertex, and neither v is3 2 3 3

adjacent to a remote nor v is adjacent to a vertex which is adjacent to a remote3

vertex. Then d(v )5 1 or d(v )5 2. If d(v )5 1, then T has a unique g -set3 3 3 p

S 5 hv , v j. If d(v )5 2, let T 95 T 2 hv j, then for any g -set S of T, S 2 hv , v j1 2 3 v 3 p 1 23

is a paired-dominating set of T 9. So g (T 9)<g (T )2 2. However, any g -set of T 9p p p

can be extended to a paired-dominating set of T by adding the vertices v and v . So1 2

g (T )<g (T 9)1 2. Consequently, g (T )5g (T 9)1 2. Since g(T )<g(T 9)1 2<p p p p

g (T 9)1 25g (T ) and T [ J , g (T 9)5g(T 9). Applying the inductive hypothesis top p p p

T 9, T 9 has a unique g -dominating set S . It follows that S 5 S < hv , v j is ap 1 1 1 2

unique g -set of T.p

CASE 2. d(v )5 22

By Lemma 1 and Lemma 4, for any g -set S of T, v , v [ S, v [PN(v , S) andp 1 2 3 2

v [⁄ S. As discussed in Case 1, we can infer d(v )5 2. Furthermore, we will prove4 3

d(v )5 2. Otherwise, v is adjacent to a vertex u (u ± v , v ). It is easily seen that4 4 1 1 3 5

neither u is a leaf nor u is a remote vertex. Let T denotes the subtree of1 1 v4

T 2 hv v j containing v , and T denotes the subtree of T 2 hv v j containing v .4 5 4 v 4 5 55

Then g(T )< d(v ), uS > T u5 2(d(v )2 1). Since v [⁄ S, S > T is a paired-v 4 v 4 4 v4 4 5

dominating set of T , so g (T )<g (T )2 2(d(v )2 1) and g(T )<g(T )1v p v p 4 v5 5 4

g(T )< d(v )1g(T ). Then g (T ).g(T ), a contradiction. So d(v )5 2, v [ S.v 4 v p 4 55 5

Let T 95 T 2 hv , v , v , v j, then S 2 hv , v j is a paired-dominating set of T 9. So0 1 2 3 1 2

g (T 9)<g (T )2 2. However, any g -set of T9 can be extended to a paired-p p p

dominating set of T by adding the vertices v and v . So g (T )<g (T 9)1 2.1 2 p p

Consequently, g (T )5g (T 9)1 2. Since g(T )< 21g(T 9)< 21g (T 9)5g (T ),p p p p

and g(T )5g (T ), then g(T 9)5g (T 9). Applying the inductive hypothesis to T 9, T 9p p

has a unique g -dominating set S . It follows that S 5 S < hv , v j is a unique g -setp 1 1 1 2 p

of T. h

LEMMA 6. If T 9[ J and T is obtained from T 9 by a Type-1 operation, thenp

T [ J .p
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Proof. Suppose T is obtained from T 9 by attaching a vertex u to the vertex v of T 9.
Let S be a g -set of T 9 with v [ S, it is easily seen that S is a g -set of T. Sop p

g(T )>g(T 9)5g (T 9)5g (T )>g(T ), then g(T )5g (T ). So T [ J . hp p p p

LEMMA 7. If T 9[ J and T is obtained from T 9 by a Type-2 operation, thenp

T [ J .p

Proof. Suppose T is obtained from T 9 by attaching the path u u u u u to the1 2 3 4 5

vertex v in T 9. Let S be a g -set of T 9 with v [ S , then S 5 S < hu , u j is a1 p 1 1 3 4

paired-dominating set of T. So g (T )<g (T 9)1 2. For every g-set X of T withp p

u [X, if v [⁄ PN(u , X), then g(T 9)<g(T )2 2. If v [PN(u , X), then X > T 9s1 1 1

T 92 hvj, g(T 92 hvj)<g(T )2 2. So g(T 9)<g(T 92 hvj)1 1<g(T )2 1. We claim
that g(T 9)<g(T )2 2. Otherwise g(T 9)5g(T )2 1, then X95 (X > T 9)< hvj is a
g-set of T and PN(v, X9)5 v. A contradiction to the conditions of v. Since T 9[ J ,p

g (T )<g (T 9)1 25g(T 9)1 2<g(T )<g (T ). Hence g(T )5g (T ) and T [ J . hp p p p p

LEMMA 8. If T 9[ J and T is obtained from T 9 by a Type-3 operation, thenp

T [ J .p

Proof. Suppose T is obtained from T 9 by attaching a remote vertex u of P to the1 4

vertex v in T 9, where P 5 u u u u . Let S be a g -set of T 9, then S 5 S < hu , u j4 0 1 2 3 1 p 1 1 2

is a paired-dominating set of T. So g (T )<g (T 9)1 2. Let X be a g-set of T withp p

u , u [X. If v [⁄ PN(u , X), then T 9>X sT 9. So g(T 9)<g(T )2 2. Then g(T )>1 2 1

g(T 9)1 25g (T 9)1 2>g (T ). It follows g(T )5g (T ), so T [ J . If v [p p p p

PN(u , X), then T 9>X sT 92 hvj. Discussed as in Lemma 7, we have g(T 9)<1

g(T )2 2. Then g(T )> 21g(T 9)5 21g (T 9)>g (T ). Hence g(T )5g (T ) andp p p

T [ J . hp

Similarly, we have the following lemma:

LEMMA 9. If T 9[ J and T is obtained from T 9 by a Type-4 operation, thenp

T [ J .p

We now define the family F asp

F 5 hT u T is obtained from P by a finite sequence of operations of Type-1,p 4

Type-2, Type-3 or Type-4j.

LEMMA 10. F # J .p p

Proof. Suppose that T [F , we show that T [ J . To do this, we use induction onp p

s(T ), the number of operations required to construct the tree T. If s(T )5 0, then
T 5P [ J . Assume that for all trees T 9[F with s(T 9), k, where k > 1 is an4 p p

integer, that T 9[ J . Let T [F be a tree with s(T )5 k. Then T is obtained fromp p
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some tree T 9 by one of operations. But then T 9[F and s(T 9), k. Applying thep

inductive hypothesis to T 9, T 9[ J . Hence by Lemma 6, Lemma 7, Lemma 8 andp

Lemma 9, T [ J . hp

LEMMA 11. J #F .p p

Proof. Suppose that T [ J . We show that T [F . To do this, we use induction onp p

n, the order of the tree T. If n < 4, then T [ hP j and clearly T [F . Assume that4 p

for all trees T 9[ J of order n9, n, where n > 5 that T 9[F . Let T [ J be a treep p p

of order n and let v v . . . v be a longest path in T. By Lemma 5, T has a unique0 1 l

g -set S.p

CASE 1. d((v )> 31

Then there exists a leaf u ± v such that uv [E(T ). Let T 95 T 2 u. By Lemma 40 1

and Lemma 5, T has a unique g -set S with v , v [ S. It is easily seen that S is alsop 1 2

a g -set and a g-set of T 9. Hence T 9[ J . Applying the inductive hypothesis ofp p

T 9, T 9[F . Hence T is obtained from T 9 by a Type-1 operation. Thus T [F .p p

CASE 2. d((v )5 21

Case 2.1. d(v )> 32

As discussed in Lemma 5, v is not adjacent to a remote vertex. So we may assume2

that v is adjacent to a leaf.2

If v [⁄ PN(v , S), let T 95 T denotes the subtree of T 2 hv v j containing v ,3 2 v 2 3 33

then S 2 hv , v j is a paired-dominating set of T 9. So g (T 9)<g (T )2 2. And any1 2 p p

g-set of T 9 can be extended to a dominating set of T by adding the vertices v and1

v . So g(T )<g(T 9)1 2. Hence g (T 9)<g (T )2 25g(T )2 2<g(T 9). Then2 p p

g(T 9)5g (T 9)5g (T )2 2, T 9[ J . Applying the inductive hypothesis to T 9, T 9[p p p

F . For every g-set S9 of T 9, we claim that there is no vertex u [ S9 such thatp

v 5PN(u, S9). Otherwise, S 5 hv , v j< (S92 huj) is a dominating set of T, then3 1 2

g(T )<g(T 9)1 1. But g (T )5g(T 9)1 2 implies that g(T 9)>g(T )2 15g (T )2p p

1>g(T 9)1 1, a contradiction. So T is obtained from T 9 by a Type-3 operation and
a finite sequence of operations of Type-1. Thus T [F .p

If v [PN(v , S), then d(v )5 1 or d(v )5 2. If d(v )5 1, then T is obtained3 2 3 3 3

from P by a finite sequence of operations of Type-1. Then T [F . If d(v )5 2, let4 p 3

T 95T 2 hv , v j<N[v ]. By Lemma 1 and Lemma 4, v , v [ S and v [⁄ S, then0 1 2 1 2 3

g (T 9)<g (T )2 25g(T )2 2<g(T 9). So g(T 9)5g (T 9). Thus T 9[ J . Applyingp p p p

the inductive hypothesis to T 9, T 9[F . T is obtained from T 9 by a Type-4 operationp

and a finite sequence of operations of Type-1. Thus T [F .p
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Case 2.2. d(v )5 22

By Lemma 1 and Lemma 4, v , v [ S, v [PN(v , S) and v [⁄ S. Discussed as1 2 3 2 4

Lemma 5, we have d(v )5 d(v )5 2. Then v [ S. Let T 95 T 2 hv , v , v , v , v j,3 4 5 0 1 2 3 4

then S 5 S 2 hv , v j is a paired-dominating set of T 9. So g (T 9)<g (T )2 2 and1 1 2 p p

g(T )<g(T 9)1 2. Then g (T 9)<g (T )2 25g(T )2 2<g(T 9). So g(T 9)5p p

g (T 9)5g (T )2 2. Thus T 9[ J . By Lemma 5, S 5 S 2 hv , v j is a unique g -setp p p 1 1 2 p

of T 9. Applying the inductive hypothesis to T 9, T 9[F . As discussed in Case 2.1,p

for every g-set X of T 9 there is no vertex u such that v 5PN(u, X). T is obtained5

from T 9 by Type-2 operation. Thus T [F . hp

By Lemma 10 and Lemma 11, we have proved the following theorem:

THEOREM 3. For a tree T, g(T )5g (T ) if and only if T [F .p p
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